Changes in nuclear Ca2+ homeostasis activate specific gene expression programs and are central to the acquisition and the plastic storage of memories. DREAM /KChIP proteins form heterotetramers that bind DNA and repress transcription in a Ca2+-dependent manner. Single ablation of one member of the DREAM/KChIP family may result in a mild or the absence of phenotype due to partial gene compensation. To study the function of DREAM/KChIP proteins in the brain, we used transgenic mice expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). We show that daDREAM controls the expression of several activity-dependent transcription factors including Npas4, Nr4a1, Mef2C, JunB and c-Fos, as well as the chromatin modifying enzyme Mbd4 and proteins related to actin polymerization like Arc and gelsolin. Thus, directly or through these targets, expression of daDREAM in the forebrain resulted in a complex phenotype characterized by i) impaired learning and memory, ii) loss of recurrent inhibition and enhanced LTP in the dentate gyrus without affecting Kv4-mediated potassium currents, and iii) modified spine density in DG granule neurons. Our results propose DREAM as a master-switch transcription factor regulating several activity-dependent gene expression programs to control synaptic plasticity, learning and memory.
DREAM controls the on/off switch of specific activity-dependent transcription pathways.
Specimen part
View SamplesDeregulated intracellular Ca2+ homeostasis underlies synaptic dysfunction and is a common feature in neurodegenerative processes, including Huntington's disease (HD). DREAM/calsenilin/KChIP-3 is a multifunctional Ca2+ binding protein that controls the expression level and/or the activity of several proteins related to Ca2+ homeostasis, neuronal excitability and neuronal survival. We found that expression of endogenous DREAM (DRE antagonist modulator) is reduced in the striatum of R6 mice, in STHdh-Q111/111 knock in striatal neurons and in HD patients. DREAM down regulation in R6 striatum occurs early after birth, well before the onset of motor coordination impairment, and could be part of an endogenous mechanism of neuroprotection, since i) R6/2 mice hemizygous for the DREAM gene (R6/2xDREAM+/-) showed delayed onset of locomotor impairment and prolonged lifespan, ii) motor impairment after chronic administration of 3-NPA was reduced in DREAM knockout mice and enhanced in daDREAM transgenic mice and, iii) lentiviral-mediated DREAM expression in STHdh-Q111/111 knock in cells sensitizes them to oxidative stress. Transcriptomic analysis showed that changes in gene expression in R6/2 striatum were notably reduced in R6/2xDREAM+/- striatum. Chronic administration of repaglinide, a molecule able to bind to DREAM in vitro and to accelerate its clearance in vivo, delayed the onset of motor dysfunction, reduced striatal loss and prolonged the lifespan in R6/2 mice. Furthermore, exposure to repaglinide protected STHdh-Q111/111 knock in striatal neurons sensitized to oxidative stress by lentiviral-mediated DREAM overexpression. Thus, genetic and pharmacological evidences disclose a role for DREAM silencing in early neuroprotective mechanisms in HD.
Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.
Specimen part
View SamplesOur present study reveals significant decelerating effects on senescence processes in middle-aged SAMP1 mice supplemented for 6 or 14 months with the reduced form (QH2, 500 mg/ kg BW/ day) of coenzyme Q10 (CoQ10). To unravel molecular mechanisms of these CoQ10 effects, a genome-wide transcript profiling in liver, heart, brain and kidney of SAMP1 mice supplemented with the reduced (QH2) or oxidized form of CoQ10 (Q10) was performed. Liver seems to be the main target tissue of CoQ10 intervention, followed by kidney, heart and brain. Stringent evaluation of the resulting data revealed that QH2 has a stronger impact on gene expression than Q10, which was primarily due to differences in the bioavailability. Indeed, we found that QH2 supplementation was more effective than Q10 to increase levels of CoQ10 in the liver of SAMP1 mice (54.92-fold and 30.36-fold, respectively). To identify functional and regulatory connections of the top 50 (p < 0.05) up- and down-regulated QH2-sensitive transcripts in liver (fold changes ranging from 21.24 to -6.12), text mining analysis (Genomatix BiblioSphere, GFG level B3) was used. Hereby, we identified 11 QH2-sensitive genes which are regulated by PPAR- and are primarily involved in cholesterol synthesis (e.g. HMGCS1, HMGCL, HMGCR), fat assimilation (FABP5), lipoprotein metabolism (PLTP) and inflammation (STAT-1). Thus, we provide evidence that QH2 is involved in the reduction of fat and cholesterol synthesis via modulation of the PPAR- signalling pathway. These data may explain, at least in part, the observed effects on decelerated age-dependent degeneration processes in QH2-supplemented SAMP1 mice.
Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice.
Sex, Age, Specimen part
View SamplesGene expression profiling of zebrafish early eye development on 3 to 5 days post fertilization (dpf)
Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data.
Specimen part
View SamplesIn this study, we aim to identify candidate biomarkers which may be useful as surrogate indicators of toxicity for pre-clinical development of panPPAR-agonist drug candidates. Gene expression microarray, histopathology and clinical chemistry data were generated from liver, heart, kidney and skeletal muscles of three groups of mice administered with three different dosages of an experimental pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist, PPM-201, for 14 days. The histopathology and clinical chemistry data were compared with the gene expression analysis and candidate biomarker genes were identified.
Simultaneous non-negative matrix factorization for multiple large scale gene expression datasets in toxicology.
Specimen part, Treatment
View SamplesXBP1 is the transcriptino factor that is activated by the ER stress. XBP1 is known to induce the ER dexpansion and increase the expression of the ER chaperone genes to prtect the cell from the ER stress. We generated a mouse strain that lacked XBP1 specifically in the mouse intestine by breeding the XBP1flox mice with Villin-cre mice. Here we examined genes that are differentially expressed between WT and XBP1 KO mouse intestine to identify genes that are downstream of XBP1.
XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease.
No sample metadata fields
View SamplesOur goal was to identify gene expression patterns that correlated with prevention of autoimmune alopecia in C3H/HeJ mice following alopecic graft transplantation
Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition.
Specimen part, Treatment
View SamplesIn order to explore molecules whose expression is controlled by Slc39a13, we investigated gene expression profiling of primary osteoblast isolated from wild-type and Slc39a13 knockout mice.
The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways.
No sample metadata fields
View Samples